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1 Some classes of first order ODE

1.1 Linear

A linear first-order ODE is of the form

y′(t) = g(t)y(t) + h(t), y(t0) = y0

Rewrite the problem in the form:

y′(t)− g(t)y(t) = h(t)

The strategy is to find an integrating factor u(t) and multiply both sides by it.

uy′ − ugy = uh (1)

Why did we do this? Because of the product rule. Let z(t) = u(t)y(t) then z′ = uy′ + u′y. So if
we can find a u such that u′ = −ug, then (1) can be simplified to z′ = uh, which can be further
solved by direct integration. In all,

u(t) = exp(−
∫ t

s0

g(s)ds)

z(t) =

∫ t

s0

u(s)h(s)ds+ C

y(t) =

[∫ t

s0

u(s)h(s)dt

]
/u(t) + C/u(t)

(2)

How to choose s0, and is it important how to choose s0? I will discuss this in the tutorial.
Here are some exercises.

1. y′ = 2ty + t, y(0) = 1

2. (1 + t2)y′ = 2ty + 1 + t2 y(1) = 2

3. y′ = 1 + x+ y + xy, y(0) = 0

1.2 Separable

A separable first-order ode has the form

y′(t) = g(t)h(y), y(t0) = y0

or another not rigorous form is

H(y)dy = g(t)dt, y(t0) = y0

which can be easily solved by direct integration and then adding a constant whose value is deter-
mined by the initial condition. ∫

H(y)dy =

∫
g(t)dt+ C

1.2.1 One homogeneous variant

An interesting variant is the homogeneous first-order ode in the following form.

y′(t) = g(
y

t
), y(t0) = y0 and t > 0

To solve it, we introduce a variable v(t) = y
t and have y′(t) = tv′(t) + v(t) = g(v).

Cleaning this up, we obtain a separable ODE.

v′(t) =
g(v)− v

t

Here are some exercises.

Math3310 Tutorial Page 1



Math3310 2425 September 12, 2024

1. solve y′ = 1 + y
t + (yt )

2 for t > 0 and y(1) = 1

2. solve y′ = y2−ty+t2

t2 , y(1) = 2

1.3 Extra Topics

1.3.1 Exact Equations

an exact equation has the form:

f(t, y)dt+ g(t, y)dy = 0

where f and g satisfy fy = gt. Recall that for a smooth function h(t, y), we always have
hty = hyt, so we may guess that there exists a function h(t, y) such that dh = htdt + hydy and
ht(t, y) = f(t, y) and hy(t, y) = g(t, y).

How to find such h? First, integrating f(t, y) w.r.t t, to “eliminates” the effect of t. We have

h(t, y) =

∫
f(t, y)dt+ C(y) = F (t, y) + C(y)

Doing the same thing to y and g(t, y), we have

h(t, y) =

∫
g(t, y)dy +D(t) = G(t, y) +D(t)

Last find C(y) and D(t) by requiring

F (t, y) + C(y) = G(t, y) +D(t)

Substituting these into the equations, we have

dh = f(t, y)dt+ g(t, y)dy = 0

so in this ode, y(t) is determined implicitly by t via the equation

F (t, y) + C(y) = E

where E is a constant determined by the initial condition. Here are some exercises.

1. solve (y cos(t) + 2tey)dt+ (sin(t) + t2ey + 2)dy = 0, y(0) = 1

2. solve 2tydt+ (2y + t2)dy = 0, y(1) = 2

1.3.2 Bernoulli

The last type I would like to mention is the Bernoulli first-order ode.

y′(t) = g(t)y(t) + h(t) [y(t)]
n

Here n does not equal 1. Otherwise, it is the aforementioned separable ODE.
The key idea is to make a suitable substitution. Remind that (yk)′ = kyk−1y′. So multiply

both sides by y−n and let v = y1−n, we have

1

1− n
v′ = g(t)v(t) + h(t)

which is a simple linear ODE.
Here are some exercises.

1. solve y′ = 5y − 5ty3, y(0) = 1
10

2. solve y′ + ty = ty4, y(0) = 2
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2 linear second order ODE

2.1 constant coefficients

First, we discuss the easiest case.

ay′′ + by′ + cy = 0

where a, b, c are constant, a ̸= 0 and the equation is homogeneous.
Let y(x) = erx and the question would be simplified to a quadratic equation in one Unknown

ar2 + br + c = 0. There are three possible cases.

1. b2 − 4ac > 0. There are two distinct real roots r1 and r2. The general solution is y(x) =
α1e

r1x + α2e
r2x and α1 and α2 are determined by two conditions of y and its derivatives.

2. b2 − 4ac > 0. There are two distinct complex roots α ± iβ. The general solution is
y(x) = α1e

α+iβx + α2e
α−iβx which can be written as linear combination of eαx sin(βx)

and eαx cos(βx)

3. b2 − 4ac = 0. There is only one repeated root r. So one of its solutions is y1 = erx.
What about another one y2? Since y2 must not be constant multiple of y1, we may assume
y2 = v(x) · erx and substitute it into the ode, we would obtain v′′ = 0, so a choice of v is
v(x) = x and y2 = xerx.

What if the equation is not homogeneous?

ay′′ + by′ + cy = f(x)

If we find a particular solution L(x) to this ode, then the general solution is y(x) = L(x) +
α1y1(x) + α2y2x. So how to find the L(x)?

1. Guess.

2. Variation of parameter. Detail would be discussed in the class. Here we give out the
conclusion.

Theorem 1 Consider the ODE

ay′′ + by′ + cy = f(x)

Let y1 and y2 be a fundamental set of solutions of its homogeneous type, then a particular
solution is given by

L(x) = −y1(x)

∫
y2(x)f(x)

a(x) ·W (y1, y2)
dx+ y2(x)

∫
y1(x)f(x)

a(x) ·W (y1, y2)
dx

where W (y1, y2) = y1y
′
2 − y2y

′
1 is called Wronskian.

Here are some exercises.

1. Find a general solution to y′′ + 4y = sin(x)

2. Find a general solution to y′′ + 2y′ + 4y = ex

3. Find a general solution to y′′ − 2y′ + y = ex

x2+1
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3 Fourier series and PDE

3.1 Eigenvalue problems and motivation

Following three ODEs are called eigenproblems.

x′′ + λx = 0, x(a) = 0, x(b) = 0, (3)

x′′ + λx = 0, x′(a) = 0, x′(b) = 0, (4)

x′′ + λx = 0, x(a) = x(b), x′(a) = x′(b). (5)

A number λ is called an eigenvalue of (3) (resp. (4) or (5)) if and only if there exists a
nonzero (not identically zero) solution to (3) (resp. (4) or (5)) given that specific λ. A nonzero
solution is called a corresponding eigenfunction. Eigenvectors for two distinct eigenvalues of a
symmetric matrix are orthogonal. There is an analogue of this property about eigenfunctions.
Before introducing it, we should introduce the concept of inner product in the vector space of
functions, which is defined as

⟨f, g⟩1 ≜
∫ b

a

f(t)g(t)dt

A useful observation is as follows:

Theorem 2 Suppose that x1(t) and x2(t) are two eigenfunctions of the problem (3), (4) or (5)
for two different eigenvalues λ1 and λ2. Then they are orthogonal w.r.t the inner prodect ⟨, ⟩1,
namely ∫ b

a

x1(t)x2(t)dt = 0

Proof would be given in the tutorial.
This property is called orthogonality of eigenfunctions. An important example is given in the

class and a = −π, b = π in this case.∫ π

−π

sin(mt) sin(nt)dt = δm(n)

∫ π

−π

cos(mt) cos(nt)dt = δm(n)∫ π

−π

cos(mt) sin(nt)dt = δm(n)

3.2 2L-periodic functions

In the class, all content about Fourier series is related to a set of eigenfunctions {cos(nx), sin(nx)}.
But when the period of function switches from 2π to a more general case 2L, all eigenfunctions
fn(x) would change and can be easily found by solving equations (3) (resp. (4) or (5)). A shortcut
is to directly compute λ such that cos(λx) = cos(λ(x+ 2L)) so the new set of eigenfunctions is{

cos(
π

L
nx), sin(

π

L
nx)

}
Next is to compute the fourier series of a 2L-periodic functions. Suppose

f(x) = a0 +

∞∑
n=1

an cos(
π

L
nx) +

∞∑
n=1

bn sin(
π

L
nx)
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then ∫ L

−L

f(x)1dx =

∫ L

−L

a0dx+

∞∑
n=1

an

∫ L

−L

cos(
π

L
nx)dx+

∞∑
n=1

bn

∫ L

−L

sin(
π

L
nx)dx

= 2L · a0∫ L

−L

f(x) cos(
π

L
kx)dx =

∫ L

−L

a0 cos(
π

L
kx)dx+

∞∑
n=1

an

∫ L

−L

cos(
π

L
nx) cos(

π

L
kx)dx+

∞∑
n=1

bn

∫ L

−L

sin(
π

L
nx) cos(

π

L
kx)dx

= ak

∫ L

−L

cos(
π

L
kx) cos(

π

L
kx)dx

= L · ak∫ L

−L

f(x) sin(
π

L
kx)dx =

∫ L

−L

a0 sin(
π

L
kx)dx+

∞∑
n=1

an

∫ L

−L

cos(
π

L
nx) sin(

π

L
kx)dx+

∞∑
n=1

bn

∫ L

−L

sin(
π

L
nx) sin(

π

L
kx)dx

= bk

∫ L

−L

sin(
π

L
kx) sin(

π

L
kx)dx

= L · bk
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